Search results
Results from the WOW.Com Content Network
The design matrix contains data on the independent variables (also called explanatory variables), in a statistical model that is intended to explain observed data on a response variable (often called a dependent variable). The theory relating to such models uses the design matrix as input to some linear algebra : see for example linear regression.
In statistics, the precision matrix or concentration matrix is the matrix inverse of the covariance matrix or dispersion matrix, =. [ 1 ] [ 2 ] [ 3 ] For univariate distributions , the precision matrix degenerates into a scalar precision , defined as the reciprocal of the variance , p = 1 σ 2 {\displaystyle p={\frac {1}{\sigma ^{2}}}} .
For example, the Latin square above is not reduced because its first column is A, C, B rather than A, B, C. Any Latin square can be reduced by permuting (that is, reordering) the rows and columns. Here switching the above matrix's second and third rows yields the following square:
The following is an age-based Leslie matrix for this species. Each row in the first and third matrices corresponds to animals within a given age range (0–1 years, 1–2 years and 2–3 years). In a Leslie matrix the top row of the middle matrix consists of age-specific fertilities: F 1, F 2 and F 3. Note, that F 1 = S i ×R i in the matrix
The probability density function for the random matrix X (n × p) that follows the matrix normal distribution , (,,) has the form: (,,) = ([() ()]) / | | / | | /where denotes trace and M is n × p, U is n × n and V is p × p, and the density is understood as the probability density function with respect to the standard Lebesgue measure in , i.e.: the measure corresponding to integration ...
Synonym for (0,1)-matrix, binary matrix or Boolean matrix. Can be used to represent a k-adic relation. Markov matrix: A matrix of non-negative real numbers, such that the entries in each row sum to 1. Metzler matrix: A matrix whose off-diagonal entries are non-negative. Monomial matrix: A square matrix with exactly one non-zero entry in each ...
In mathematics, particularly in linear algebra and applications, matrix analysis is the study of matrices and their algebraic properties. [1] Some particular topics out of many include; operations defined on matrices (such as matrix addition, matrix multiplication and operations derived from these), functions of matrices (such as matrix exponentiation and matrix logarithm, and even sines and ...
For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.