enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of centroids - Wikipedia

    en.wikipedia.org/wiki/List_of_centroids

    The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object X {\displaystyle X} in n {\displaystyle n} - dimensional space is the intersection of all hyperplanes that divide X {\displaystyle X} into two parts of equal moment about the hyperplane.

  3. Centroid - Wikipedia

    en.wikipedia.org/wiki/Centroid

    Centroid of a triangle. In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. [further explanation needed] The same definition extends to any object in -dimensional Euclidean space. [1]

  4. Pappus's centroid theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_centroid_theorem

    The theorem applied to an open cylinder, cone and a sphere to obtain their surface areas. The centroids are at a distance a (in red) from the axis of rotation.. In mathematics, Pappus's centroid theorem (also known as the Guldinus theorem, Pappus–Guldinus theorem or Pappus's theorem) is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of ...

  5. Euler line - Wikipedia

    en.wikipedia.org/wiki/Euler_line

    In geometry, the Euler line, named after Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər), is a line determined from any triangle that is not equilateral.It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.

  6. Triangle center - Wikipedia

    en.wikipedia.org/wiki/Triangle_center

    In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions.

  7. Nagel point - Wikipedia

    en.wikipedia.org/wiki/Nagel_point

    The Nagel point is the isotomic conjugate of the Gergonne point.The Nagel point, the centroid, and the incenter are collinear on a line called the Nagel line.The incenter is the Nagel point of the medial triangle; [2] [3] equivalently, the Nagel point is the incenter of the anticomplementary triangle.

  8. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    Expressed symmetrically as 4 points on the unit sphere, centroid at the origin, with lower face parallel to the plane, the vertices are: (,,), (,,), (,,), (,,) with the edge length of . A regular tetrahedron can be embedded inside a cube in two ways such that each vertex is a vertex of the cube, and each edge is a diagonal of one of the cube's ...

  9. Orthocentric system - Wikipedia

    en.wikipedia.org/wiki/Orthocentric_system

    When P is chosen as the centroid G, then α = –⅓. When P is chosen as the circumcenter O, then α = –1 and the generated orthocentric system is congruent to the original system as well as being a reflection of it about the nine-point center. In this configuration P A, P B, P C form a Johnson triangle of the original reference triangle ABC.