Search results
Results from the WOW.Com Content Network
Fastran was written in the 1980s by James C. Newman while at NASA and is an acronym derived from NASA FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS. [2] Crack closure was first observed by Wolf Elber as propping open a crack tip resulting in a reduction of the full stress intensity range or crack tip driving force. [3]
Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance to fracture.
In the context to structural analysis, a structure refers to a body or system of connected parts used to support a load. Important examples related to Civil Engineering include buildings, bridges, and towers; and in other branches of engineering, ship and aircraft frames, tanks, pressure vessels, mechanical systems, and electrical supporting structures are important.
Structural engineering depends upon a detailed knowledge of loads, physics and materials to understand and predict how structures support and resist self-weight and imposed loads. To apply the knowledge successfully structural engineers will need a detailed knowledge of mathematics and of relevant empirical and theoretical design codes.
Advanced structural mechanics may include the effects of stability and non-linear behaviors. Mechanics of structures is a field of study within applied mechanics that investigates the behavior of structures under mechanical loads, such as bending of a beam, buckling of a column, torsion of a shaft, deflection of a thin shell, and vibration of a ...
Fracture toughness varies by approximately 4 orders of magnitude across materials. Metals hold the highest values of fracture toughness. Cracks cannot easily propagate in tough materials, making metals highly resistant to cracking under stress and gives their stress–strain curve a large zone of plastic flow.
The education of structural engineers is usually through a civil engineering bachelor's degree, and often a master's degree specializing in structural engineering. The fundamental core subjects for structural engineering are strength of materials or solid mechanics, structural analysis (static and dynamic), material science and numerical analysis.
It uses methods of analytical solid mechanics, structural engineering, safety engineering, probability theory, and catastrophe theory to calculate the load and stress in the structural components and analyze the safety of a damaged structure. There is a direct analogy between fracture mechanics of solid and structural fracture mechanics: