enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponent bias - Wikipedia

    en.wikipedia.org/wiki/Exponent_bias

    When interpreting the floating-point number, the bias is subtracted to retrieve the actual exponent. For a half-precision number, the exponent is stored in the range 1 .. 30 (0 and 31 have special meanings), and is interpreted by subtracting the bias for an 5-bit exponent (15) to get an exponent value in the range −14 .. +15.

  3. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    The half-precision binary floating-point exponent is encoded using an offset-binary representation, with the zero offset being 15; also known as exponent bias in the IEEE 754 standard. [9] E min = 00001 2 − 01111 2 = −14; E max = 11110 2 − 01111 2 = 15; Exponent bias = 01111 2 = 15

  4. IUPAC numerical multiplier - Wikipedia

    en.wikipedia.org/wiki/IUPAC_numerical_multiplier

    The numbers 200-900 would be confused easily with 22 to 29 if they were used in chemistry. khīlioi = 1000, diskhīlioi = 2000, triskhīlioi = 3000, etc. 13 to 19 are formed by starting with the Greek word for the number of ones, followed by και (the Greek word for 'and'), followed by δέκα (the Greek word for 'ten').

  5. Extended precision - Wikipedia

    en.wikipedia.org/wiki/Extended_precision

    The exponent field is biased by 16383, meaning that 16383 has to be subtracted from the value in the exponent field to compute the actual power of 2. [20] An exponent field value of 32767 (all fifteen bits 1) is reserved so as to enable the representation of special states such as infinity and Not a Number.

  6. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    In single precision, the bias is 127, so in this example the biased exponent is 124; in double precision, the bias is 1023, so the biased exponent in this example is 1020. fraction = .01000… 2 . IEEE 754 adds a bias to the exponent so that numbers can in many cases be compared conveniently by the same hardware that compares signed 2's ...

  7. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    Exponent: 11 bits; Significand precision: 53 bits (52 explicitly stored) The sign bit determines the sign of the number (including when this number is zero, which is signed). The exponent field is an 11-bit unsigned integer from 0 to 2047, in biased form: an exponent value of 1023 represents the actual zero. Exponents range from −1022 to ...

  8. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    The encoding scheme for these binary interchange formats is the same as that of IEEE 754-1985: a sign bit, followed by w exponent bits that describe the exponent offset by a bias, and p − 1 bits that describe the significand. The width of the exponent field for a k-bit format is computed as w = round(4 log 2 (k)) − 13. The existing 64- and ...

  9. bfloat16 floating-point format - Wikipedia

    en.wikipedia.org/wiki/Bfloat16_floating-point_format

    Exponent bias = 7F H = 127; Thus, in order to get the true exponent as defined by the offset-binary representation, the offset of 127 has to be subtracted from the value of the exponent field. The minimum and maximum values of the exponent field (00 H and FF H) are interpreted specially, like in the IEEE 754 standard formats.