Search results
Results from the WOW.Com Content Network
Both the "compatibility" function STDEVP and the "consistency" function STDEV.P in Excel 2010 return the 0.5 population standard deviation for the given set of values. However, numerical inaccuracy still can be shown using this example by extending the existing figure to include 10 15 , whereupon the erroneous standard deviation found by Excel ...
The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.
Under the assumption of normality of returns, an active risk of x per cent would mean that approximately 2/3 of the portfolio's active returns (one standard deviation from the mean) can be expected to fall between +x and -x per cent of the mean excess return and about 95% of the portfolio's active returns (two standard deviations from the mean) can be expected to fall between +2x and -2x per ...
This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.
The listagg function, as defined in the SQL:2016 standard [2] aggregates data from multiple rows into a single concatenated string. In the entity relationship diagram, aggregation is represented as seen in Figure 1 with a rectangle around the relationship and its entities to indicate that it is being treated as an aggregate entity. [3]
About 68% of values drawn from a normal distribution are within one standard deviation σ from the mean; about 95% of the values lie within two standard deviations; and about 99.7% are within three standard deviations. [8] This fact is known as the 68–95–99.7 (empirical) rule, or the 3-sigma rule.
Common measures of statistical dispersion are the standard deviation, variance, range, interquartile range, absolute deviation, mean absolute difference and the distance standard deviation. Measures that assess spread in comparison to the typical size of data values include the coefficient of variation.
Bias in standard deviation for autocorrelated data. The figure shows the ratio of the estimated standard deviation to its known value (which can be calculated analytically for this digital filter), for several settings of α as a function of sample size n. Changing α alters the variance reduction ratio of the filter, which is known to be