Search results
Results from the WOW.Com Content Network
The elements of the rate vector will be rate equations that are functions of one or more species and parameters, p. In the example, these might be simple mass-action rate laws such as = where is the rate constant parameter. The particular laws chosen will depend on the specific system under study.
Biochemical systems theory is a mathematical modelling framework for biochemical systems, based on ordinary differential equations (ODE), in which biochemical processes are represented using power-law expansions in the variables of the system.
The solution of the equations, by either analytical or numerical means, describes how the biological system behaves either over time or at equilibrium. There are many different types of equations and the type of behavior that can occur is dependent on both the model and the equations used. The model often makes assumptions about the system.
It is possible to build a computer simulation of a linear biochemical pathway. This can be done by building a simple model that describes each intermediate through a differential equation. The differential equations can be written by invoking mass conservation. For example, for the linear pathway:
The Hill equation is used extensively in pharmacology to quantify the functional parameters of a drug [citation needed] and are also used in other areas of biochemistry. The Hill equation can be used to describe dose-response relationships, for example ion channel open-probability (P-open) vs. ligand concentration. [15]
An example of a Lineweaver–Burk plot of 1/v against 1/a. In biochemistry, the Lineweaver–Burk plot (or double reciprocal plot) is a graphical representation of the Michaelis–Menten equation of enzyme kinetics, described by Hans Lineweaver and Dean Burk in 1934. [1]
In the field of biochemistry, the specificity constant (also called kinetic efficiency or /), is a measure of how efficiently an enzyme converts substrates into products.A comparison of specificity constants can also be used as a measure of the preference of an enzyme for different substrates (i.e., substrate specificity).
These can be inorganic (for example, water and metal ions) or organic (for example, the amino acids, which are used to synthesize proteins). [7] The mechanisms used by cells to harness energy from their environment via chemical reactions are known as metabolism. The findings of biochemistry are applied primarily in medicine, nutrition, and ...