enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Characteristic polynomial - Wikipedia

    en.wikipedia.org/wiki/Characteristic_polynomial

    The term secular function has been used for what is now called characteristic polynomial (in some literature the term secular function is still used). The term comes from the fact that the characteristic polynomial was used to calculate secular perturbations (on a time scale of a century, that is, slow compared to annual motion) of planetary ...

  3. Faddeev–LeVerrier algorithm - Wikipedia

    en.wikipedia.org/wiki/Faddeev–LeVerrier_algorithm

    Urbain Le Verrier (1811–1877) The discoverer of Neptune.. In mathematics (linear algebra), the Faddeev–LeVerrier algorithm is a recursive method to calculate the coefficients of the characteristic polynomial = of a square matrix, A, named after Dmitry Konstantinovich Faddeev and Urbain Le Verrier.

  4. Ackermann's formula - Wikipedia

    en.wikipedia.org/wiki/Ackermann's_Formula

    Computing the characteristic polynomial and choosing a suitable feedback matrix can be a challenging task, especially in larger systems. One way to make computations easier is through Ackermann's formula. For simplicity's sake, consider a single input vector with no reference parameter r, such as

  5. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    This polynomial is called the characteristic polynomial of A. Equation is called the characteristic equation or the secular equation of A. The fundamental theorem of algebra implies that the characteristic polynomial of an n-by-n matrix A, being a polynomial of degree n, can be factored into the product of n linear terms,

  6. Companion matrix - Wikipedia

    en.wikipedia.org/wiki/Companion_matrix

    The roots of the characteristic polynomial () are the eigenvalues of ().If there are n distinct eigenvalues , …,, then () is diagonalizable as () =, where D is the diagonal matrix and V is the Vandermonde matrix corresponding to the λ 's: = [], = [].

  7. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.

  8. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    We call p(λ) the characteristic polynomial, and the equation, called the characteristic equation, is an N th-order polynomial equation in the unknown λ. This equation will have N λ distinct solutions, where 1 ≤ N λ ≤ N. The set of solutions, that is, the eigenvalues, is called the spectrum of A. [1] [2] [3]

  9. Newton's identities - Wikipedia

    en.wikipedia.org/wiki/Newton's_identities

    Using them in reverse to express the elementary symmetric polynomials in terms of the power sums, they can be used to find the characteristic polynomial by computing only the powers and their traces. This computation requires computing the traces of matrix powers A k {\displaystyle \mathbf {A} ^{k}} and solving a triangular system of equations.