Search results
Results from the WOW.Com Content Network
In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...
The equation for the rate constant is similar in functional form to both the Arrhenius and Eyring equations: k ( T ) = P Z e − Δ E / R T , {\displaystyle k(T)=PZe^{-\Delta E/RT},} where P is the steric (or probability) factor and Z is the collision frequency, and Δ E is energy input required to overcome the activation barrier.
This expression describes the rate at which species ′ is consumed in reaction . The constants A k {\displaystyle A_{k}} and E k {\displaystyle E_{k}} , the Arrhenius pre-exponential factor and activation energy, respectively, are adjusted for specific reactions, often as the result of experimental measurements.
where k is the rate constant. A was referred to as the frequency factor (now called the pre-exponential coefficient), and E a is regarded as the activation energy. By the early 20th century many had accepted the Arrhenius equation, but the physical interpretation of A and E a remained vague.
The Eyring equation (occasionally also known as Eyring–Polanyi equation) is an equation used in chemical kinetics to describe changes in the rate of a chemical reaction against temperature. It was developed almost simultaneously in 1935 by Henry Eyring , Meredith Gwynne Evans and Michael Polanyi .
The rate ratio at a temperature increase of 10 degrees (marked by points) is equal to the Q 10 coefficient. The Q 10 temperature coefficient is a measure of temperature sensitivity based on the chemical reactions. The Q 10 is calculated as:
In chemical kinetics, the pre-exponential factor or A factor is the pre-exponential constant in the Arrhenius equation (equation shown below), an empirical relationship between temperature and rate coefficient. It is usually designated by A when determined from experiment, while Z is usually left for collision frequency. The pre-exponential ...
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".