Search results
Results from the WOW.Com Content Network
is the magnitude of the applied magnetic field (A/m), is absolute temperature , is a material-specific Curie constant (K). Pierre Curie discovered this relation, now known as Curie's law, by fitting data from experiment. It only holds for high temperatures and weak magnetic fields.
Magnetic current density, which has the unit V/m 2 (volt per square meter), is usually represented by the symbols and . [a] The superscripts indicate total and impressed magnetic current density. [1] The impressed currents are the energy sources. In many useful cases, a distribution of electric charge can be mathematically replaced by an ...
Assuming the external magnetic field is uniform and shares a common axis with the paramagnet, the extensive parameter characterizing the magnetic state is , the magnetic dipole moment of the system. The fundamental thermodynamic relation describing the system will then be of the form U = U ( S , V , I , N ) {\displaystyle U=U(S,V,I,N)} .
The Curie temperature of nanoparticles is also affected by the crystal lattice structure: body-centred cubic (bcc), face-centred cubic (fcc), and a hexagonal structure (hcp) all have different Curie temperatures due to magnetic moments reacting to their neighbouring electron spins. fcc and hcp have tighter structures and as a results have ...
Here μ 0 is the permeability of free space; M the magnetization (magnetic moment per unit volume), B = μ 0 H is the magnetic field, and C the material-specific Curie constant: = (+), where k B is the Boltzmann constant, N the number of magnetic atoms (or molecules) per unit volume, g the Landé g-factor, μ B the Bohr magneton, J the angular ...
To a first order approximation, the temperature dependence of spontaneous magnetization at low temperatures is given by the Bloch T 3/2 law: [1]: 708 = ((/) /),where M(0) is the spontaneous magnetization at absolute zero.
The magnetic field (marked B, indicated by red field lines) around wire carrying an electric current (marked I) Compass and wire apparatus showing Ørsted's experiment (video [1]) In electromagnetism , Ørsted's law , also spelled Oersted's law , is the physical law stating that an electric current induces a magnetic field .
The potential magnetic energy of a magnet or magnetic moment in a magnetic field is defined as the mechanical work of the magnetic force on the re-alignment of the vector of the magnetic dipole moment and is equal to: = The mechanical work takes the form of a torque : = = which will act to "realign" the magnetic dipole with the magnetic field.