Search results
Results from the WOW.Com Content Network
Characteristic impedance is determined by the geometry and materials of the transmission line and, for a uniform line, is not dependent on its length. The SI unit of characteristic impedance is the ohm. The characteristic impedance of a lossless transmission line is purely real, with no reactive component (see below).
Impedance (Z) parameter may defines by applying a fixed current into one port (I1) of a transmission line with the other port open and measuring the resulting voltage on each port (V1, V2) [8] [9] and computing the impedance parameter Z11 is V1/I1, and the impedance parameter Z12 is V2/I1. Since transmission lines are electrically passive and ...
Equivalent circuit of an unbalanced transmission line (such as coaxial cable) where: 2/Z o is the trans-admittance of VCCS (Voltage Controlled Current Source), x is the length of transmission line, Z(s) ≡ Z o (s) is the characteristic impedance, T(s) is the propagation function, γ(s) is the propagation "constant", s ≡ j ω, and j 2 ≡ −1.
Versions of the transmission-line equation may be similarly derived for the admittance loss free case and for the impedance and admittance lossy cases. The Smith chart graphical equivalent of using the transmission-line equation is to normalise Z L , {\displaystyle \,Z_{\mathsf {L}}\,,} to plot the resulting point on a Z Smith chart and to draw ...
In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.
Looking towards a load through a length l of lossless transmission line, the normalized impedance changes as l increases, following the blue circle. At l=λ/4, the normalized impedance is reflected about the centre of the chart. Standing waves on a transmission line with an open-circuit load (top), and a short-circuit load (bottom).
Mismatch loss in transmission line theory is the amount of power expressed in decibels that will not be available on the output due to impedance mismatches and signal reflections. A transmission line that is properly terminated, that is, terminated with the same impedance as that of the characteristic impedance of the transmission line, will ...
Equivalent circuit of a transmission line for the calculation of Z 0 from the primary line constants. The characteristic impedance of a transmission line, , is defined as the impedance looking into an infinitely long line. Such a line will never return a reflection since the incident wave will never reach the end to be reflected.