Search results
Results from the WOW.Com Content Network
Neutron generators are neutron source devices which contain compact linear particle accelerators and that produce neutrons by fusing isotopes of hydrogen together. The fusion reactions take place in these devices by accelerating either deuterium , tritium , or a mixture of these two isotopes into a metal hydride target which also contains ...
Neutron scattering allows scientists to count scattered neutrons, measure their energies and the angles at which they scatter, and map their final positions. This information can reveal the molecular and magnetic structure and behavior of materials, such as high-temperature superconductors , polymers , metals, and biological samples.
The BN-350 fast-neutron reactor at Aktau, Kazakhstan.It operated between 1973 and 1994. A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV, on average), as opposed to slow thermal neutrons used in thermal-neutron reactors.
Some isotopes undergo spontaneous fission (SF) with emission of neutrons.The most common spontaneous fission source is the isotope californium-252. 252 Cf and all other SF neutron sources are made by irradiating uranium or a transuranic element in a nuclear reactor, where neutrons are absorbed in the starting material and its subsequent reaction products, transmuting the starting material into ...
The integral fast reactor (IFR), originally the advanced liquid-metal reactor (ALMR), is a design for a nuclear reactor using fast neutrons and no neutron moderator (a "fast" reactor). IFRs can breed more fuel and are distinguished by a nuclear fuel cycle that uses reprocessing via electrorefining at the reactor site.
The (n,2n) reaction on 100 Mo yields a higher reaction cross-section for high energy neutrons than of (n,γ) on 98 Mo with thermal neutrons. [62] In particular, this method requires accelerators that generate fast neutron spectrums, such as ones using D-T [63] or other fusion-based reactions, [64] or high energy spallation or knock out ...
While the best-known neutron reactions are neutron scattering, neutron capture, and nuclear fission, for some light nuclei (especially odd-odd nuclei) the most probable reaction with a thermal neutron is a transfer reaction: Some reactions are only possible with fast neutrons:
Nuclear spallation to generate additional neutrons can be used to enhance the fission output, with the caveat that this is a tradeoff between the number of neutrons (typically 20-30 neutrons per spallation event) against a reduction of the individual energy of each neutron. This is a consideration if the reactor is to use natural Thorium as a fuel.