enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary multiplier - Wikipedia

    en.wikipedia.org/wiki/Binary_multiplier

    However, until the late 1970s, most minicomputers did not have a multiply instruction, and so programmers used a "multiply routine" [1] [2] [3] which repeatedly shifts and accumulates partial results, often written using loop unwinding. Mainframe computers had multiply instructions, but they did the same sorts of shifts and adds as a "multiply ...

  3. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    Since 9 = 10 − 1, to multiply a number by nine, multiply it by 10 and then subtract the original number from the result. For example, 9 × 27 = 270 − 27 = 243. This method can be adjusted to multiply by eight instead of nine, by doubling the number being subtracted; 8 × 27 = 270 − (2×27) = 270 − 54 = 216.

  4. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    In arbitrary-precision arithmetic, it is common to use long multiplication with the base set to 2 w, where w is the number of bits in a word, for multiplying relatively small numbers. To multiply two numbers with n digits using this method, one needs about n 2 operations.

  5. FOIL method - Wikipedia

    en.wikipedia.org/wiki/FOIL_method

    The FOIL method is a special case of a more general method for multiplying algebraic expressions using the distributive law. The word FOIL was originally intended solely as a mnemonic for high-school students learning algebra. The term appears in William Betz's 1929 text Algebra for Today, where he states: [2]

  6. Carry-less product - Wikipedia

    en.wikipedia.org/wiki/Carry-less_product

    Computing the carry-less product. The carry-less product of two binary numbers is the result of carry-less multiplication of these numbers. This operation conceptually works like long multiplication except for the fact that the carry is discarded instead of applied to the more significant position.

  7. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation. These can be of quite general use, for example in modular arithmetic or powering of matrices. For semigroups for which additive notation is commonly used, like elliptic curves used in cryptography , this method is also referred to as double-and-add .

  8. Saturation arithmetic - Wikipedia

    en.wikipedia.org/wiki/Saturation_arithmetic

    Saturation arithmetic is a version of arithmetic in which all operations, such as addition and multiplication, are limited to a fixed range between a minimum and maximum value. If the result of an operation is greater than the maximum, it is set (" clamped ") to the maximum; if it is below the minimum, it is clamped to the minimum.

  9. Schönhage–Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Schönhage–Strassen...

    The run-time bit complexity to multiply two n-digit numbers using the algorithm is (⁡ ⁡ ⁡) in big O notation. The Schönhage–Strassen algorithm was the asymptotically fastest multiplication method known from 1971 until 2007.