Search results
Results from the WOW.Com Content Network
Depth of processing falls on a shallow to deep continuum. [citation needed] Shallow processing (e.g., processing based on phonemic and orthographic components) leads to a fragile memory trace that is susceptible to rapid decay. Conversely, deep processing (e.g., semantic processing) results in a more durable memory trace. [1]
Deep linguistic processing is a natural language processing framework which draws on theoretical and descriptive linguistics. It models language predominantly by way of theoretical syntactic/semantic theory (e.g. CCG , HPSG , LFG , TAG , the Prague School ).
For example, in a sentence such as "He entered John's house through the front door", "the front door" is a referring expression and the bridging relationship to be identified is the fact that the door being referred to is the front door of John's house (rather than of some other structure that might also be referred to). Dialog system –
In addition to disambiguation problems, decreased accuracy can occur due to varying levels of training data for machine translating programs. Both example-based and statistical machine translation rely on a vast array of real example sentences as a base for translation, and when too many or too few sentences are analyzed accuracy is jeopardized.
Semantic processing is the deepest level of processing and it requires the listener to think about the meaning of the cue. Studies on brain imaging have shown that, when semantic processing occurs, there is increased brain activity in the left prefrontal regions of the brain that does not occur during different kinds of processing. One study ...
Many languages allow generic copying by one or either strategy, defining either one copy operation or separate shallow copy and deep copy operations. [1] Note that even shallower is to use a reference to the existing object A, in which case there is no new object, only a new reference. The terminology of shallow copy and deep copy dates to ...
These models are shallow, two-layer neural networks that are trained to reconstruct linguistic contexts of words. Word2vec takes as its input a large corpus of text and produces a vector space , typically of several hundred dimensions , with each unique word in the corpus being assigned a corresponding vector in the space.
The semantic gap characterizes the difference between two descriptions of an object by different linguistic representations, for instance languages or symbols. According to Andreas M. Hein, the semantic gap can be defined as "the difference in meaning between constructs formed within different representation systems". [1]