Search results
Results from the WOW.Com Content Network
The radius of this Apollonius circle is + where is the incircle radius and is the semiperimeter of the triangle. [ 27 ] The following relations hold among the inradius r {\displaystyle r} , the circumradius R {\displaystyle R} , the semiperimeter s {\displaystyle s} , and the excircle radii r a {\displaystyle r_{a}} , r b {\displaystyle r_{b ...
Apothem of a hexagon Graphs of side, s; apothem, a; and area, A of regular polygons of n sides and circumradius 1, with the base, b of a rectangle with the same area. The green line shows the case n = 6. The apothem (sometimes abbreviated as apo [1]) of a regular polygon is a line segment from the center to the midpoint of one of its sides.
If one side is held in a fixed position, then as the quadrilateral is flexed, the incenter traces out a circle of radius / where a,b,c,d are the sides in sequence and s is the semiperimeter. Characterizations in the four subtriangles
While each side would have length using a Euclidean metric, where r is the circle's radius, its length in taxicab geometry is 2r. Thus, a circle's circumference is 8 r . Thus, the value of a geometric analog to π {\displaystyle \pi } is 4 in this geometry.
Let R be the radius of the arc which forms part of the perimeter of the segment, θ the central angle subtending the arc in radians, c the chord length, s the arc length, h the sagitta of the segment, d the apothem of the segment, and a the area of the segment.
The area A of any triangle is the product of its inradius (the radius of its inscribed circle) and its semiperimeter: A = r s . {\displaystyle A=rs.} The area of a triangle can also be calculated from its semiperimeter and side lengths a, b, c using Heron's formula :
The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center .
The unit-radius 600-cell has tetrahedral cells of edge length , 20 of which meet at each vertex to form an icosahedral pyramid (a 4-pyramid with an icosahedron as its base). Thus the 600-cell contains 120 icosahedra of edge length 1 φ {\textstyle {\frac {1}{\varphi }}} .