enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  3. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectationmaximization...

    The EM iteration alternates between performing an expectation (E) step, which creates a function for the expectation of the log-likelihood evaluated using the current estimate for the parameters, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then ...

  4. Generalized method of moments - Wikipedia

    en.wikipedia.org/wiki/Generalized_method_of_moments

    In econometrics and statistics, the generalized method of moments (GMM) is a generic method for estimating parameters in statistical models.Usually it is applied in the context of semiparametric models, where the parameter of interest is finite-dimensional, whereas the full shape of the data's distribution function may not be known, and therefore maximum likelihood estimation is not applicable.

  5. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  6. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    The parameters of the model, and for =, …,, are typically estimated by maximum likelihood estimation using the expectation-maximization algorithm (EM); see also EM algorithm and GMM model. Bayesian inference is also often used for inference about finite mixture models. [ 2 ]

  7. List of text mining methods - Wikipedia

    en.wikipedia.org/wiki/List_of_text_mining_methods

    Divisive Clustering: Top-down approach. Large clusters are split into smaller clusters. [3] Density-based Clustering: A structure is determined by the density of data points. [4] DBSCAN; Distribution-based Clustering: Clusters are formed based on mathematical methods from data. [1] Expectation-maximization algorithm; Collocation; Stemming Algorithm

  8. Mean shift - Wikipedia

    en.wikipedia.org/wiki/Mean_shift

    where are the input samples and () is the kernel function (or Parzen window). is the only parameter in the algorithm and is called the bandwidth. This approach is known as kernel density estimation or the Parzen window technique. Once we have computed () from the equation above, we can find its local maxima using gradient ascent or some other optimization technique. The problem with this ...

  9. Entropy estimation - Wikipedia

    en.wikipedia.org/wiki/Entropy_estimation

    In various science/engineering applications, such as independent component analysis, [1] image analysis, [2] genetic analysis, [3] speech recognition, [4] manifold learning, [5] and time delay estimation [6] it is useful to estimate the differential entropy of a system or process, given some observations.