Search results
Results from the WOW.Com Content Network
A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic wave whose waveform (shape) is the trigonometric sine function. In mechanics , as a linear motion over time, this is simple harmonic motion ; as rotation , it corresponds to uniform circular motion .
This sinusoidal model can be fit using nonlinear least squares; to obtain a good fit, routines may require good starting values for the unknown parameters. Fitting a model with a single sinusoid is a special case of spectral density estimation and least-squares spectral analysis .
It is related to a more general concept called analytic representation, [3] which decomposes a sinusoid into the product of a complex constant and a factor depending on time and frequency. The complex constant, which depends on amplitude and phase, is known as a phasor, or complex amplitude, [4] [5] and (in older texts) sinor [6] or even ...
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
The most common test signals that fulfill this are full amplitude triangle waves and sawtooth waves. For example, a 16-bit ADC has a maximum signal-to-quantization-noise ratio of 6.02 × 16 = 96.3 dB. When the input signal is a full-amplitude sine wave the distribution of the signal is no longer uniform, and the corresponding equation is instead
The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage , the current in a circuit , or a field vector such as electric field strength or flux density .
The transfer function of an electronic filter is the amplitude at the output as a function of the frequency of a constant amplitude sine wave applied to the input. For optical imaging devices, the optical transfer function is the Fourier transform of the point spread function (a function of spatial frequency ).
The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.