enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inertia - Wikipedia

    en.wikipedia.org/wiki/Inertia

    Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics , and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [ 1 ]

  3. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    For a simple pendulum, this definition yields a formula for the moment of inertia I in terms of the mass m of the pendulum and its distance r from the pivot point as, =. Thus, the moment of inertia of the pendulum depends on both the mass m of a body and its geometry, or shape, as defined by the distance r to the axis of rotation.

  4. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.

  5. Inertial frame of reference - Wikipedia

    en.wikipedia.org/wiki/Inertial_frame_of_reference

    Figure 2: Simple-minded frame-of-reference example. For a simple example involving only the orientation of two observers, consider two people standing, facing each other on either side of a north-south street. See Figure 2. A car drives past them heading south. For the person facing east, the car was moving to the right.

  6. Second moment of area - Wikipedia

    en.wikipedia.org/wiki/Second_moment_of_area

    An arbitrary shape. ρ is the distance to the element dA, with projections x and y on the x and y axes.. The second moment of area for an arbitrary shape R with respect to an arbitrary axis ′ (′ axis is not drawn in the adjacent image; is an axis coplanar with x and y axes and is perpendicular to the line segment) is defined as ′ = where

  7. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    Moreover, any object traveling at a constant velocity must be subject to zero net force (resultant force). This is the definition of dynamic equilibrium: when all the forces on an object balance but it still moves at a constant velocity. A simple case of dynamic equilibrium occurs in constant velocity motion across a surface with kinetic ...