Search results
Results from the WOW.Com Content Network
It is usually indicated by the Greek symbol α. More accurately, degree of dissociation refers to the amount of solute dissociated into ions or radicals per mole. In case of very strong acids and bases, degree of dissociation will be close to 1. Less powerful acids and bases will have lesser degree of dissociation.
The chemical species HA is an acid that dissociates into A −, called the conjugate base of the acid, and a hydrogen ion, H +. [a] The system is said to be in equilibrium when the concentrations of its components do not change over time, because both forward and backward reactions are occurring at the same rate. [1]
Svante Arrhenius, father of the concept of electrolyte dissociation in aqueous solution for which he received the Nobel Prize in Chemistry in 1903 . In his 1884 dissertation, Svante Arrhenius put forth his explanation of solid crystalline salts disassociating into paired charged particles when dissolved, for which he won the 1903 Nobel Prize in Chemistry.
These ions can react with hydrogen ions (H + according to Arrhenius) from the dissociation of acids to form water in an acid–base reaction. A base was therefore a metal hydroxide such as NaOH or Ca(OH) 2. Such aqueous hydroxide solutions were also described by certain characteristic properties.
Acid strength is the tendency of an acid, symbolised by the chemical formula, to dissociate into a proton, +, and an anion, . The dissociation or ionization of a strong acid in solution is effectively complete, except in its most concentrated solutions.
When a strong acid is dissolved in water, it reacts with it to form hydronium ion (H 3 O +). [2] An example of this would be the following reaction, where "HA" is the strong acid: HA + H 2 O → A − + H 3 O + Any acid that is stronger than H 3 O + reacts with H 2 O to form H 3 O +. Therefore, no acid stronger than H 3 O + exists in H 2 O.
For electrolytes, it could be understood as a capacity of acid/base to ionize itself. A low degree of ionization is sometimes called partially ionized (also weakly ionized), and a high degree of ionization as fully ionized. However, the term fully ionized is also used to describe an ion that has no electrons left. [1]
The reaction is consistent with the Brønsted–Lowry definition because in reality the hydrogen ion exists as the hydronium ion, so that the neutralization reaction may be written as H 3 O + + OH − → H 2 O + H 2 O. When a strong acid is neutralized by a strong base there are no excess hydrogen ions left in the solution.