enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    In control engineering and system identification, a state-space representation is a mathematical model of a physical system that uses state variables to track how inputs shape system behavior over time through first-order differential equations or difference equations. These state variables change based on their current values and inputs, while ...

  3. State-transition matrix - Wikipedia

    en.wikipedia.org/wiki/State-transition_matrix

    The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .

  4. Controllability - Wikipedia

    en.wikipedia.org/wiki/Controllability

    The state of a deterministic system, which is the set of values of all the system's state variables (those variables characterized by dynamic equations), completely describes the system at any given time. In particular, no information on the past of a system is needed to help in predicting the future, if the states at the present time are known ...

  5. Mathematical formulation of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    The time evolution of the state is given by a differentiable function from the real numbers R, representing instants of time, to the Hilbert space of system states. This map is characterized by a differential equation as follows: If |ψ(t) denotes the state of the system at any one time t, the following Schrödinger equation holds:

  6. Density matrix - Wikipedia

    en.wikipedia.org/wiki/Density_matrix

    A pure quantum state is a state that can not be written as a probabilistic mixture, or convex combination, of other quantum states. [5] There are several equivalent characterizations of pure states in the language of density operators. [9]: 73 A density operator represents a pure state if and only if:

  7. Ackermann's formula - Wikipedia

    en.wikipedia.org/wiki/Ackermann's_Formula

    Consider a linear continuous-time invariant system with a state-space representation ˙ = + () = where x is the state vector, u is the input vector, and A, B, C are matrices of compatible dimensions that represent the dynamics of the system.

  8. State variable - Wikipedia

    en.wikipedia.org/wiki/State_variable

    The set of possible combinations of state variable values is called the state space of the system. The equations relating the current state of a system to its most recent input and past states are called the state equations, and the equations expressing the values of the output variables in terms of the state variables and inputs are called the ...

  9. State observer - Wikipedia

    en.wikipedia.org/wiki/State_observer

    In control theory, a state observer, state estimator, or Luenberger observer is a system that provides an estimate of the internal state of a given real system, from measurements of the input and output of the real system. It is typically computer-implemented, and provides the basis of many practical applications.