enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector , the state vector . If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.

  3. State space (computer science) - Wikipedia

    en.wikipedia.org/wiki/State_space_(computer_science)

    Vacuum World, a shortest path problem with a finite state space. In computer science, a state space is a discrete space representing the set of all possible configurations of a "system". [1] It is a useful abstraction for reasoning about the behavior of a given system and is widely used in the fields of artificial intelligence and game theory.

  4. State variable - Wikipedia

    en.wikipedia.org/wiki/State_variable

    The set of possible combinations of state variable values is called the state space of the system. The equations relating the current state of a system to its most recent input and past states are called the state equations, and the equations expressing the values of the output variables in terms of the state variables and inputs are called the ...

  5. State-transition matrix - Wikipedia

    en.wikipedia.org/wiki/State-transition_matrix

    The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .

  6. Controllability - Wikipedia

    en.wikipedia.org/wiki/Controllability

    The state of a deterministic system, which is the set of values of all the system's state variables (those variables characterized by dynamic equations), completely describes the system at any given time. In particular, no information on the past of a system is needed to help in predicting the future, if the states at the present time are known ...

  7. Observability - Wikipedia

    en.wikipedia.org/wiki/Observability

    Consider a physical system modeled in state-space representation. A system is said to be observable if, for every possible evolution of state and control vectors, the current state can be estimated using only the information from outputs (physically, this generally corresponds to information obtained by sensors). In other words, one can ...

  8. Minimal realization - Wikipedia

    en.wikipedia.org/wiki/Minimal_realization

    [1] [2] The realization is called "minimal" because it describes the system with the minimum number of states. [2] The minimum number of state variables required to describe a system equals the order of the differential equation; [3] more state variables than the minimum can be defined. For example, a second order system can be defined by two ...

  9. Full state feedback - Wikipedia

    en.wikipedia.org/wiki/Full_state_feedback

    Full state feedback (FSF), or pole placement, is a method employed in feedback control system theory to place the closed-loop poles of a plant in predetermined locations in the s-plane. [1] Placing poles is desirable because the location of the poles corresponds directly to the eigenvalues of the system, which control the characteristics of the ...