Search results
Results from the WOW.Com Content Network
A metric space defined over a set of points in terms of distances in a graph defined over the set is called a graph metric. The vertex set (of an undirected graph) and the distance function form a metric space, if and only if the graph is connected. The eccentricity ϵ(v) of a vertex v is the greatest distance between v and any other vertex; in ...
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
This graph is distance regular with intersection array {7,4,1;1,2,7} and automorphism group PGL(2,7). Some first examples of distance-regular graphs include: The complete graphs. The cycle graphs. The odd graphs. The Moore graphs. The collinearity graph of a regular near polygon. The Wells graph and the Sylvester graph.
The approximate distance returned is of stretch at most , that is, the quotient obtained by dividing the estimated distance by the actual distance lies between 1 and . The initialization time is O ( k m n 1 / k ) {\displaystyle O(kmn^{1/k})} .
In general, a distance matrix is a weighted adjacency matrix of some graph. In a network, a directed graph with weights assigned to the arcs, the distance between two nodes of the network can be defined as the minimum of the sums of the weights on the shortest paths joining the two nodes (where the number of steps in the path is bounded). [2]
The formula for the closest point to the origin may be expressed more succinctly using notation from linear algebra.The expression + + in the definition of a plane is a dot product (,,) (,,), and the expression + + appearing in the solution is the squared norm | (,,) |.
Each point corresponds to its signed distance from the origin (a number with an absolute value equal to the distance and a + or − sign chosen based on direction). A geometric transformation of the line can be represented by a function of a real variable , for example translation of the line corresponds to addition, and scaling the line ...
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...