Search results
Results from the WOW.Com Content Network
The ground tissue of plants includes all tissues that are neither dermal nor vascular. It can be divided into three types based on the nature of the cell walls. This tissue system is present between the dermal tissue and forms the main bulk of the plant body. Parenchyma cells have thin primary walls and usually remain alive after they become ...
Cells in the outer layers divide in a sideways fashion relative to each other, which keeps these layers distinct, whereas the lower layer divides in a more random fashion in all directions. [ 1 ] In cell biology , the meristem is a structure composed of specialized tissue found in plants, consisting of stem cells , known as meristematic cells ...
The formation of the seed is the defining part of the process of reproduction in seed plants (spermatophytes). Other plants such as ferns, mosses and liverworts, do not have seeds and use water-dependent means to propagate themselves. Seed plants now dominate biological niches on land, from forests to grasslands both in hot and cold climates.
Plant anatomy or phytotomy is the general term for the study of the internal structure of plants.Originally, it included plant morphology, the description of the physical form and external structure of plants, but since the mid-20th century, plant anatomy has been considered a separate field referring only to internal plant structure.
The spermatophytes were traditionally divided into angiosperms, or flowering plants, and gymnosperms, which includes the gnetophytes, cycads, [5] ginkgo, and conifers. Older morphological studies believed in a close relationship between the gnetophytes and the angiosperms, [ 6 ] in particular based on vessel elements .
In most seed plants, especially woody types, the endodermis is present in roots but not in stems. The endodermis helps regulate the movement of water, ions and hormones into and out of the vascular system. It may also store starch, be involved in perception of gravity and protect the plant against toxins moving into the vascular system.
Water is lost much faster than CO 2 is absorbed, so plants need to replace it, and have developed systems to transport water from the moist soil to the site of photosynthesis. [33] Early plants sucked water between the walls of their cells, then evolved the ability to control water loss (and CO 2 acquisition) through the use of stomata.
It supports leaves, flowers and fruits, transports water and dissolved substances between the roots and the shoots in the xylem and phloem, engages in photosynthesis, stores nutrients, and produces new living tissue. [1] The stem can also be called the culm, halm, haulm, stalk, or thyrsus. The stem is normally divided into nodes and internodes: [2]