Search results
Results from the WOW.Com Content Network
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two. [1] Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.
Sulfates of Group (II) metal ions (M 2+), generally decrease in solubility down the group. The most difficult scales to remove are those of Barium sulfate because of its high insolubility forming very hard scale deposits. A general representation of the reaction is summarized in reaction: 5.
Barium iodate, Ba(IO 3) 2, has a solubility product K sp = [Ba 2+][IO 3 −] 2 = 1.57 x 10 −9. Its solubility in pure water is 7.32 x 10 −4 M. However in a solution that is 0.0200 M in barium nitrate, Ba(NO 3) 2, the increase in the common ion barium leads to a decrease in iodate ion concentration. The solubility is therefore reduced to 1. ...
Substance Formula 0 °C 10 °C 20 °C 30 °C 40 °C 50 °C 60 °C 70 °C 80 °C 90 °C 100 °C Barium acetate: Ba(C 2 H 3 O 2) 2: 58.8: 62: 72: 75: 78.5: 77: 75
In most cases solubility decreases with decreasing temperature; in such cases the excess of solute will rapidly separate from the solution as crystals or an amorphous powder. [2] [3] [4] In a few cases the opposite effect occurs. The example of sodium sulfate in water is well-known and this was why it was used in early studies of solubility.
Note the decrease in ΔG ‡ activation for the polar-solvent reaction conditions. This arises from the fact that polar solvents stabilize the formation of the carbocation intermediate to a greater extent than the non-polar-solvent conditions. This is apparent in the ΔE a, ΔΔG ‡ activation. On the right is an S N 2 reaction
Group 2 are vascular transporters and are 'low affinity sulfate transporters'. Group 3 is the so-called 'leaf group', however, still little is known about the characteristics of this group. Group 4 transporters are involved in the efflux of sulfate from the vacuoles , whereas the function of Group 5 sulfate transporters is not known yet, and ...