enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    To represent the number 1,230,400 in normalized scientific notation, the decimal separator would be moved 6 digits to the left and × 10 6 appended, resulting in 1.2304 × 10 6. The number −0.004 0321 would have its decimal separator shifted 3 digits to the right instead of the left and yield −4.0321 × 10 −3 as a result.

  3. Engineering notation - Wikipedia

    en.wikipedia.org/wiki/Engineering_notation

    Engineering notation or engineering form (also technical notation) is a version of scientific notation in which the exponent of ten is always selected to be divisible by three to match the common metric prefixes, i.e. scientific notation that aligns with powers of a thousand, for example, 531×10 3 instead of 5.31×10 5 (but on calculator displays written without the ×10 to save space).

  4. List of binary codes - Wikipedia

    en.wikipedia.org/wiki/List_of_binary_codes

    This is a list of some binary codes that are (or have been) used to represent text as a sequence of binary digits "0" and "1". Fixed-width binary codes use a set number of bits to represent each character in the text, while in variable-width binary codes, the number of bits may vary from character to character.

  5. Elementary charge - Wikipedia

    en.wikipedia.org/wiki/Elementary_charge

    The elementary charge, usually denoted by e, is a fundamental physical constant, defined as the electric charge carried by a single proton (+ 1e) or, equivalently, the magnitude of the negative electric charge carried by a single electron, which has charge −1 e.

  6. Machine epsilon - Wikipedia

    en.wikipedia.org/wiki/Machine_epsilon

    This alternative definition is significantly more widespread: machine epsilon is the difference between 1 and the next larger floating point number.This definition is used in language constants in Ada, C, C++, Fortran, MATLAB, Mathematica, Octave, Pascal, Python and Rust etc., and defined in textbooks like «Numerical Recipes» by Press et al.

  7. x86 instruction listings - Wikipedia

    en.wikipedia.org/wiki/X86_instruction_listings

    The default OperandSize and AddressSize to use for each instruction is given by the D bit of the segment descriptor of the current code segment - D=0 makes both 16-bit, D=1 makes both 32-bit. Additionally, they can be overridden on a per-instruction basis with two new instruction prefixes that were introduced in the 80386:

  8. United States military occupation code - Wikipedia

    en.wikipedia.org/wiki/United_States_military...

    The first four code symbols were made up of a two-digit code for the career field, a letter code for the field specialty, and a number code (1 to 5) indicating level of instruction in their field specialty. The fifth code symbol was an SQI code letter indicating training in a special skill (the letter "O" indicating that the soldier had no SQI).

  9. Binary-coded decimal - Wikipedia

    en.wikipedia.org/wiki/Binary-coded_decimal

    In this case, positive numbers always have a most significant digit between 0 and 4 (inclusive), while negative numbers are represented by the 10's complement of the corresponding positive number. As a result, this system allows for 32-bit packed BCD numbers to range from −50,000,000 to +49,999,999, and −1 is represented as 99999999.