enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transfer function - Wikipedia

    en.wikipedia.org/wiki/Transfer_function

    In simple cases, this function can be represented as a two-dimensional graph of an independent scalar input versus the dependent scalar output (known as a transfer curve or characteristic curve). Transfer functions for components are used to design and analyze systems assembled from components, particularly using the block diagram technique, in ...

  3. Closed-loop pole - Wikipedia

    en.wikipedia.org/wiki/Closed-loop_pole

    The characteristic equation is nothing more than setting the denominator of the closed-loop transfer function to zero. In control theory there are two main methods of analyzing feedback systems: the transfer function (or frequency domain) method and the state space method. When the transfer function method is used, attention is focused on the ...

  4. Closed-loop transfer function - Wikipedia

    en.wikipedia.org/wiki/Closed-loop_transfer_function

    The closed-loop transfer function is measured at the output. The output signal can be calculated from the closed-loop transfer function and the input signal. Signals may be waveforms, images, or other types of data streams. An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below:

  5. Root locus analysis - Wikipedia

    en.wikipedia.org/wiki/Root_locus_analysis

    Thus, the closed-loop poles of the closed-loop transfer function are the roots of the characteristic equation + () =. The roots of this equation may be found wherever 1 + G ( s ) H ( s ) = 0 {\displaystyle 1+G(s)H(s)=0} .

  6. Butterworth filter - Wikipedia

    en.wikipedia.org/wiki/Butterworth_filter

    A simple example of a Butterworth filter is the third-order low-pass design shown in the figure on the right, with = 4/3 F, = 1 Ω, = 3/2 H, and = 1/2 H. [3] Taking the impedance of the capacitors to be / and the impedance of the inductors to be , where = + is the complex frequency, the circuit equations yield the transfer function for this device:

  7. Characteristic equation (calculus) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_equation...

    In mathematics, the characteristic equation (or auxiliary equation [1]) is an algebraic equation of degree n upon which depends the solution of a given n th-order differential equation [2] or difference equation. [3] [4] The characteristic equation can only be formed when the differential equation is linear and homogeneous, and has constant ...

  8. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The transfer function coefficients can also be used to construct another type of canonical form ˙ = [] + [] () = [] (). This state-space realization is called observable canonical form because the resulting model is guaranteed to be observable (i.e., because the output exits from a chain of integrators, every state has an effect on the output).

  9. Optical transfer function - Wikipedia

    en.wikipedia.org/wiki/Optical_transfer_function

    As the optical transfer function of these systems is real and non-negative, the optical transfer function is by definition equal to the modulation transfer function (MTF). Images of a point source and a spoke target with high spatial frequency are shown in (b,e) and (c,f), respectively.