Search results
Results from the WOW.Com Content Network
Damped oscillation is a typical transient response, where the output value oscillates until finally reaching a steady-state value.. In electrical engineering and mechanical engineering, a transient response is the response of a system to a change from an equilibrium or a steady state.
This period of time is known as the transient state. A capacitor acts as a short circuit immediately after the switch is closed, increasing its impedance during the transient state until it acts as an open circuit in its steady state. An inductor is the opposite, behaving as an open circuit until reaching a short circuit steady state.
Steady state is also used as an approximation in systems with on-going transient signals, such as audio systems, to allow simplified analysis of first order performance. Sinusoidal Steady State Analysis is a method for analyzing alternating current circuits using the same techniques as for solving DC circuits. [1]
A flow that is not a function of time is called steady flow. Steady-state flow refers to the condition where the fluid properties at a point in the system do not change over time. Time dependent flow is known as unsteady (also called transient [8]). Whether a particular flow is steady or unsteady, can depend on the chosen frame of reference.
The transient flow of groundwater is described by a form of the diffusion equation, similar to that used in heat transfer to describe the flow of heat in a solid (heat conduction). The steady-state flow of groundwater is described by a form of the Laplace equation, which is a form of potential flow and has analogs in numerous fields.
The transient techniques perform a measurement during the process of heating up. The advantage is that measurements can be made relatively quickly. Transient methods are usually carried out by needle probes. Non-steady-state methods to measure the thermal conductivity do not require the signal to obtain a constant value.
The steady-state response is the output of the system in the limit of infinite time, and the transient response is the difference between the response and the steady-state response; it corresponds to the homogeneous solution of the differential equation. The transfer function for an LTI system may be written as the product:
Three states are considered: [5] the steady-state is the normal operating condition with the armature magnetic flux going through the rotor; the sub-transient state (″) is the one the generator enters immediately after the fault (short circuit). In this state the armature flux is pushed completely out of the rotor.