enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    For height-balanced binary trees, the height is defined to be logarithmic (⁡) in the number of items. This is the case for many binary search trees, such as AVL trees and red–black trees . Splay trees and treaps are self-balancing but not height-balanced, as their height is not guaranteed to be logarithmic in the number of items.

  3. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    A balanced binary tree is a binary tree structure in which the left and right subtrees of every node differ in height (the number of edges from the top-most node to the farthest node in a subtree) by no more than 1 (or the skew is no greater than 1). [22]

  4. Binary search tree - Wikipedia

    en.wikipedia.org/wiki/Binary_search_tree

    Various height-balanced binary search trees were introduced to confine the tree height, such as AVL trees, Treaps, and red–black trees. [5] The AVL tree was invented by Georgy Adelson-Velsky and Evgenii Landis in 1962 for the efficient organization of information. [6] [7] It was the first self-balancing binary search tree to be invented. [8]

  5. AVL tree - Wikipedia

    en.wikipedia.org/wiki/AVL_tree

    In a binary tree the balance factor of a node X is defined to be the height difference ():= (()) (()) [6]: 459 of its two child sub-trees rooted by node X. A node X with () < is called "left-heavy", one with () > is called "right-heavy", and one with () = is sometimes simply called "balanced".

  6. B-tree - Wikipedia

    en.wikipedia.org/wiki/B-tree

    The B-tree generalizes the binary search tree, allowing for nodes with more than two children. [2] Unlike other self-balancing binary search trees, the B-tree is well suited for storage systems that read and write relatively large blocks of data, such as databases and file systems.

  7. Search tree - Wikipedia

    en.wikipedia.org/wiki/Search_tree

    For all nodes, the left subtree's key must be less than the node's key, and the right subtree's key must be greater than the node's key. These subtrees must all qualify as binary search trees. The worst-case time complexity for searching a binary search tree is the height of the tree, which can be as small as O(log n) for a tree with n elements.

  8. BATON Overlay - Wikipedia

    en.wikipedia.org/wiki/BATON_Overlay

    Height-Balanced. BATON is considered balanced if and only if the height of its two sub-trees at any node in the tree differs by at most one. If any node detects that the height-balanced constraint is violated, a restructuring process is initiated to ensure that the tree remains balanced.

  9. Tree rotation - Wikipedia

    en.wikipedia.org/wiki/Tree_rotation

    Therefore, one can strategically apply rotations to nodes whose left child and right child differ in height by more than 1. Self-balancing binary search trees apply this operation automatically. A type of tree which uses this rebalancing technique is the AVL tree.