enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .

  3. Vector fields in cylindrical and spherical coordinates

    en.wikipedia.org/wiki/Vector_fields_in...

    Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken ...

  4. Field line - Wikipedia

    en.wikipedia.org/wiki/Field_line

    A vector field defines a direction and magnitude at each point in space. A field line is an integral curve for that vector field and may be constructed by starting at a point and tracing a line through space that follows the direction of the vector field, by making the field line tangent to the field vector at each point.

  5. Phase plane - Wikipedia

    en.wikipedia.org/wiki/Phase_plane

    The entire field is the phase portrait, a particular path taken along a flow line (i.e. a path always tangent to the vectors) is a phase path. The flows in the vector field indicate the time-evolution of the system the differential equation describes.

  6. Line integral convolution - Wikipedia

    en.wikipedia.org/wiki/Line_integral_convolution

    Compared to other integration-based techniques that compute field lines of the input vector field, LIC has the advantage that all structural features of the vector field are displayed, without the need to adapt the start and end points of field lines to the specific vector field. In other words, it shows the topology of the vector field.

  7. Streamlines, streaklines, and pathlines - Wikipedia

    en.wikipedia.org/wiki/Streamlines,_streaklines...

    In steady flow (when the velocity vector-field does not change with time), the streamlines, pathlines, and streaklines coincide. This is because when a particle on a streamline reaches a point, a 0 {\displaystyle a_{0}} , further on that streamline the equations governing the flow will send it in a certain direction x → {\displaystyle {\vec ...

  8. Integral curve - Wikipedia

    en.wikipedia.org/wiki/Integral_curve

    This equation says that the vector tangent to the curve at any point x(t) along the curve is precisely the vector F(x(t)), and so the curve x(t) is tangent at each point to the vector field F. If a given vector field is Lipschitz continuous, then the Picard–Lindelöf theorem implies that there exists a unique flow for small time.

  9. Polyvector field - Wikipedia

    en.wikipedia.org/wiki/Polyvector_field

    A (,)-tensor field is a differential -form, a (,)-tensor field is a vector field, and a (,)-tensor field is -vector field. While differential forms are widely studied as such in differential geometry and differential topology , multivector fields are often encountered as tensor fields of type ( 0 , k ) {\displaystyle (0,k)} , except in the ...