Search results
Results from the WOW.Com Content Network
A formula for the area K of a cyclic orthodiagonal quadrilateral in terms of the four sides is obtained directly when combining Ptolemy's theorem and the formula for the area of an orthodiagonal quadrilateral. The result is [29]: p.222 = (+).
In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. [1] It is named after the Indian mathematician Brahmagupta (598-668). [2]
A formula for the area K of a cyclic orthodiagonal quadrilateral in terms of the four sides is obtained directly when combining Ptolemy's theorem and the formula for the area of an orthodiagonal quadrilateral. The result is [10]: p.222 = (+).
This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.
As is true more generally for any orthodiagonal quadrilateral, the area of a kite may be calculated as half the product of the lengths of the diagonals and : [10] =. Alternatively, the area can be calculated by dividing the kite into two congruent triangles and applying the SAS formula for their area.
The kites are exactly the tangential quadrilaterals that are also orthodiagonal. [3] A right kite is a kite with a circumcircle. If a quadrilateral is both tangential and cyclic, it is called a bicentric quadrilateral, and if it is both tangential and a trapezoid, it is called a tangential trapezoid.
It is a type of cyclic quadrilateral. Harmonic quadrilateral: a cyclic quadrilateral such that the products of the lengths of the opposing sides are equal. Bicentric quadrilateral: it is both tangential and cyclic. Orthodiagonal quadrilateral: the diagonals cross at right angles. Equidiagonal quadrilateral: the diagonals are of equal length.
Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]