enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. r-process - Wikipedia

    en.wikipedia.org/wiki/R-process

    Abundance peaks for the r-process occur near mass numbers A = 82 (elements Se, Br, and Kr), A = 130 (elements Te, I, and Xe) and A = 196 (elements Os, Ir, and Pt). The r-process entails a succession of rapid neutron captures (hence the name) by one or more heavy seed nuclei, typically beginning with nuclei in the abundance peak centered on 56 Fe.

  3. Nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Nucleosynthesis

    Stars fuse light elements to heavier ones in their cores, giving off energy in the process known as stellar nucleosynthesis. Nuclear fusion reactions create many of the lighter elements, up to and including iron and nickel in the most massive stars. Products of stellar nucleosynthesis remain trapped in stellar cores and remnants except if ...

  4. Supernova nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Supernova_nucleosynthesis

    Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...

  5. Superheavy element - Wikipedia

    en.wikipedia.org/wiki/Superheavy_element

    Superheavy elements, also known as transactinide elements, transactinides, or super-heavy elements, or superheavies for short, are the chemical elements with atomic number greater than 104. [1] The superheavy elements are those beyond the actinides in the periodic table; the last actinide is lawrencium (atomic number 103).

  6. s-process - Wikipedia

    en.wikipedia.org/wiki/S-process

    The elements heavier than iron with origins in dying low-mass stars are typically those produced by the s-process, which is characterized by slow neutron diffusion and capture over long periods in such stars. A calculable model for creating the heavy isotopes from iron seed nuclei in a time-dependent manner was not provided until 1961. [7]

  7. Triple-alpha process - Wikipedia

    en.wikipedia.org/wiki/Triple-alpha_process

    Fusing with additional helium nuclei can create heavier elements in a chain of stellar nucleosynthesis known as the alpha process, but these reactions are only significant at higher temperatures and pressures than in cores undergoing the triple-alpha process.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Cosmic ray spallation - Wikipedia

    en.wikipedia.org/wiki/Cosmic_ray_spallation

    In contrast, the radioactive nuclide beryllium-7 falls into the same light element range but has a half-life too short for it to have been formed before the formation of the Solar System, so that it cannot be a primordial nuclide. Since the cosmic ray spallation route is the most likely source of beryllium-7 in the environment, that isotope is ...