Search results
Results from the WOW.Com Content Network
Single-cell sequencing examines the nucleic acid sequence information from individual cells with optimized next-generation sequencing technologies, providing a higher resolution of cellular differences and a better understanding of the function of an individual cell in the context of its microenvironment. [1]
This single cell shows the process of the central dogma of molecular biology, which are all steps researchers are interested to quantify (DNA, RNA, and Protein).. In cell biology, single-cell analysis and subcellular analysis [1] refer to the study of genomics, transcriptomics, proteomics, metabolomics, and cell–cell interactions at the level of an individual cell, as opposed to more ...
Analysis of single-cell sequencing presents many challenges, such as determining the best way to normalize the data. [8] Due to a new level of complications that arise from sequencing of both proteins and transcripts at a single-cell level, the developers of CITE-Seq and their collaborators are maintaining several tools to help with data analysis.
Sequence analysis tasks are often non-trivial to resolve and require the use of relatively complex approaches, many of which are the backbone behind many existing sequence analysis tools. Of the many methods used in practice, the most popular include the following: Dynamic programming; Artificial neural network; Hidden Markov model; Support ...
A branch of the field of multiomics is the analysis of multilevel single-cell data, called single-cell multiomics. [8] [9] This approach gives us an unprecedent resolution to look at multilevel transitions in health and disease at the single cell level. An advantage in relation to bulk analysis is to mitigate confounding factors derived from ...
In cell biology, single-cell variability occurs when individual cells in an otherwise similar population differ in shape, size, position in the cell cycle, or molecular-level characteristics. Such differences can be detected using modern single-cell analysis techniques. [ 1 ]
In single-cell analysis input list of genes of interest can be selected based on differentially expressed genes or groups of genes generated from biclustering. The number of genes annotated to a GO term in the input list is normalised against the number of genes annotated to a GO term in the background set of all genes in genome to determine ...
In bioinformatics, alignment-free sequence analysis approaches to molecular sequence and structure data provide alternatives over alignment-based approaches. [1]The emergence and need for the analysis of different types of data generated through biological research has given rise to the field of bioinformatics. [2]