enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Physics of whistles - Wikipedia

    en.wikipedia.org/wiki/Physics_of_whistles

    The diameter of the orifice and cavity is d, the distance between orifice and cavity is h, and the orifice pressure P was given in kilograms force per meter squared (1 kgf/m 2 ≈ 9.8 Pa). At the lower limit of h the second term disappears. In this case, the equation could have been reformatted in terms of the acoustical Strouhal number, as ...

  3. Interaural time difference - Wikipedia

    en.wikipedia.org/wiki/Interaural_time_difference

    The interaural time difference (or ITD) when concerning humans or animals, is the difference in arrival time of a sound between two ears. It is important in the localization of sounds, as it provides a cue to the direction or angle of the sound source from the head. If a signal arrives at the head from one side, the signal has further to travel ...

  4. Stokes's law of sound attenuation - Wikipedia

    en.wikipedia.org/wiki/Stokes's_law_of_sound...

    In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...

  5. Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Speed_of_sound

    The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air is about 343 m/s (1,125 ft/s; 1,235 km/h; 767 mph; 667 kn), or 1 km in 2.91 s or one mile in 4.69 s.

  6. Underwater acoustics - Wikipedia

    en.wikipedia.org/wiki/Underwater_acoustics

    Distant ship traffic is one of the dominant noise sources [28] in most areas for frequencies of around 100 Hz, while wind-induced surface noise is the main source between 1 kHz and 30 kHz. At very high frequencies, above 100 kHz, thermal noise of water molecules begins to dominate. The thermal noise spectral level at 100 kHz is 25 dB re 1 μPa ...

  7. Acoustic attenuation - Wikipedia

    en.wikipedia.org/wiki/Acoustic_attenuation

    Acoustic attenuation. In acoustics, acoustic attenuation is a measure of the energy loss of sound propagation through an acoustic transmission medium. Most media have viscosity and are therefore not ideal media. When sound propagates in such media, there is always thermal consumption of energy caused by viscosity.

  8. Sound pressure - Wikipedia

    en.wikipedia.org/wiki/Sound_pressure

    t. e. Sound pressure or acoustic pressure is the local pressure deviation from the ambient (average or equilibrium) atmospheric pressure, caused by a sound wave. In air, sound pressure can be measured using a microphone, and in water with a hydrophone. The SI unit of sound pressure is the pascal (Pa).

  9. Diffusion map - Wikipedia

    en.wikipedia.org/wiki/Diffusion_map

    This distance is robust to noise, since the distance between two points depends on all possible paths of length between the points. From a machine learning point of view, the distance takes into account all evidences linking x i {\displaystyle x_{i}} to x j {\displaystyle x_{j}} , allowing us to conclude that this distance is appropriate for ...