enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Absolute convergence - Wikipedia

    en.wikipedia.org/wiki/Absolute_convergence

    Absolute convergence. hide. In mathematics, an infinite series of numbers is said to converge absolutely (or to be absolutely convergent) if the sum of the absolute values of the summands is finite. More precisely, a real or complex series is said to converge absolutely if for some real number Similarly, an improper integral of a function, is ...

  3. Conditional convergence - Wikipedia

    en.wikipedia.org/wiki/Conditional_convergence

    Definition. More precisely, a series of real numbers ∑ is said to converge conditionally if ∑ exists (as a finite real number, i.e. not or ), but ∑. A classic example is the alternating harmonic series given by which converges to , but is not absolutely convergent (see Harmonic series). Bernhard Riemann proved that a conditionally ...

  4. Alternating series - Wikipedia

    en.wikipedia.org/wiki/Alternating_series

    Calculus. In mathematics, an alternating series is an infinite series of terms that alternate between positive and negative signs. In capital-sigma notation this is expressed or with an > 0 for all n. Like any series, an alternating series is a convergent series if and only if the sequence of partial sums of the series converges to a limit.

  5. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Series are classified not only by whether they converge or diverge, but also by the properties of the terms a n (absolute or conditional convergence); type of convergence of the series (pointwise, uniform); the class of the term a n (whether it is a real number, arithmetic progression, trigonometric function); etc.

  6. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    This is also known as the nth root test or Cauchy's criterion. where denotes the limit superior (possibly ; if the limit exists it is the same value). If r < 1, then the series converges absolutely. If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge.

  7. Riemann series theorem - Wikipedia

    en.wikipedia.org/wiki/Riemann_series_theorem

    In mathematics, the Riemann series theorem, also called the Riemann rearrangement theorem, named after 19th-century German mathematician Bernhard Riemann, says that if an infinite series of real numbers is conditionally convergent, then its terms can be arranged in a permutation so that the new series converges to an arbitrary real number, and rearranged such that the new series diverges.

  8. Weierstrass M-test - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_M-test

    Weierstrass M-test. In mathematics, the Weierstrass M-test is a test for determining whether an infinite series of functions converges uniformly and absolutely. It applies to series whose terms are bounded functions with real or complex values, and is analogous to the comparison test for determining the convergence of series of real or complex ...

  9. Root test - Wikipedia

    en.wikipedia.org/wiki/Root_test

    In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series.It depends on the quantity | |, where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one.