Search results
Results from the WOW.Com Content Network
Carbonyl allylation has been employed in the synthesis of polyketide natural products and other oxygenated molecules with a contiguous array of stereocenters. For example, allylstannanation of a threose-derived aldehyde affords the macrolide antascomicin B, which structurally resembles FK506 and rapamycin, and is a potent binder of FKBP12. [12]
A remarkable feature of these reactions is the ability to conduct carbonyl allylation from the alcohol oxidation state. Due to a kinetic preference for primary alcohol dehydrogenation, diols containing both primary and secondary alcohols undergo site-selective carbonyl allylation at the primary alcohol without the need for protecting groups. [18]
Allylation is the attachment of an allyl group to a substrate, usually another organic compound. Classically, allylation involves the reaction of a carbanion with allyl chloride. Alternatives include carbonyl allylation with allylmetallic reagents, such as allyltrimethylsilane, [9] [10] [11] or the iridium-catalyzed Krische allylation.
Allylation of a carbonyl ketone (compound containing a ketone group and two different functional groups) has been shown. In the given reaction, the electrophilic compound (carbon with a ketone group) is treated with titanium tetrachloride, a strong Lewis acid and allyltrimethylsilane.
This reaction is widely used for carbonyl allylation. The addition of an organostannane to carbonyl group is one of the most common and efficient methods for the production of contiguous, oxygen-containing stereocenters in organic molecules.
[1] [2] Mechanism of one type of carbonyl addition hydrogen auto-transfer reaction involving hydrometalation (step 2). [ 3 ] Hydrogen auto-transfer , also known as borrowing hydrogen , is the activation of a chemical reaction by temporary transfer of two hydrogen atoms from the reactant to a catalyst and return of those hydrogen atoms back to a ...
Under chelation control, the allyl group attacks the carbonyl carbon from the less hindered side opposite to that of the R group. Once the C-C bond is fully formed, the indium is released, producing the syn diol. A similar chelated structure is relevant to the allylation of β-oxy aldehydes results in anti diols. [13] [14]
The Cram's rule of asymmetric induction named after Donald J. Cram states In certain non-catalytic reactions that diastereomer will predominate, which could be formed by the approach of the entering group from the least hindered side when the rotational conformation of the C-C bond is such that the double bond is flanked by the two least bulky groups attached to the adjacent asymmetric center. [3]