Search results
Results from the WOW.Com Content Network
The McCabe–Thiele method is a technique that is commonly employed in the field of chemical engineering to model the separation of two substances by a distillation column. [ 1 ] [ 2 ] [ 3 ] It uses the fact that the composition at each theoretical tray is completely determined by the mole fraction of one of the two components.
This is a diagram exemplifying how the en:McCabe-Thiele method is used to determine the number of theoretical equilibrium stages required in a distillation unit. Licensing I, the copyright holder of this work, hereby publish it under the following license:
The method of extractive distillation uses a separation solvent, which is generally non-volatile, has a high boiling point and is miscible with the mixture, but doesn't form an azeotropic mixture. The solvent interacts differently with the components of the mixture thereby causing their relative volatilities to change.
Phase diagram (left) and process flow diagram (right) of an apparatus for the azeotropic distillation with "material separation agent". In this case the phase diagram includes a zone where components are not miscible, so following the condensation of the azeotrope, it is possible to separate the liquid components through decantation.
For example, 95.6% ethanol (by mass) in water forms an azeotrope at 78.1 °C. If the azeotrope is not considered sufficiently pure for use, there exist some techniques to break the azeotrope to give a more pure distillate. These techniques are known as azeotropic distillation. Some techniques achieve this by "jumping" over the azeotropic ...
These types of VLE diagrams are used in the McCabe–Thiele method to determine the number of equilibrium stages (or theoretical plates) needed to distill a given composition binary feed mixture into one distillate fraction and one bottoms fraction. Corrections can also be made to take into account the incomplete efficiency of each tray in a ...
Distillation Design is a book which provides complete coverage of the design of industrial distillation columns for the petroleum refining, chemical and petrochemical plants, natural gas processing, pharmaceutical, food and alcohol distilling industries.
Fractionation at total reflux. The Fenske equation in continuous fractional distillation is an equation used for calculating the minimum number of theoretical plates required for the separation of a binary feed stream by a fractionation column that is being operated at total reflux (i.e., which means that no overhead product distillate is being withdrawn from the column).