Search results
Results from the WOW.Com Content Network
The assertion that Q is necessary for P is colloquially equivalent to "P cannot be true unless Q is true" or "if Q is false, then P is false". [9] [1] By contraposition, this is the same thing as "whenever P is true, so is Q". The logical relation between P and Q is expressed as "if P, then Q" and denoted "P ⇒ Q" (P implies Q).
It may be defined either by appending one of the two equivalent axioms (¬q → p) → (((p → q) → p) → p) or equivalently p∨(¬q)∨(p → q) to the axioms of intuitionistic logic, or by explicit truth tables for its operations. In particular, conjunction and disjunction are the same as for Kleene's and Ćukasiewicz's logic, while the ...
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. [1]
The proof of 2.1 is roughly as follows: "primitive idea" 1.08 defines p → q = ~p ∨ q. Substituting p for q in this rule yields p → p = ~p ∨ p. Since p → p is true (this is Theorem 2.08, which is proved separately), then ~p ∨ p must be true. 2.11 p ∨ ~p (Permutation of the assertions is allowed by axiom 1.4)
The simplest case occurs when an OR formula becomes one its own inputs e.g. p = q. Begin with (p ∨ s) = q, then let p = q. Observe that q's "definition" depends on itself "q" as well as on "s" and the OR connective; this definition of q is thus impredicative. Either of two conditions can result: [25] oscillation or memory.
In writing, phrases commonly used as alternatives to P "if and only if" Q include: Q is necessary and sufficient for P, for P it is necessary and sufficient that Q, P is equivalent (or materially equivalent) to Q (compare with material implication), P precisely if Q, P precisely (or exactly) when Q, P exactly in case Q, and P just in case Q. [3]
These are often denoted by uppercase letters such as P, Q and R. Examples: In P(x), P is a predicate symbol of valence 1. One possible interpretation is "x is a man". In Q(x,y), Q is a predicate symbol of valence 2. Possible interpretations include "x is greater than y" and "x is the father of y".
Logical equivalence is different from material equivalence. Formulas p {\displaystyle p} and q {\displaystyle q} are logically equivalent if and only if the statement of their material equivalence ( p ↔ q {\displaystyle p\leftrightarrow q} ) is a tautology.