Search results
Results from the WOW.Com Content Network
An important application of caesium iodide crystals, which are scintillators, is electromagnetic calorimetry in experimental particle physics.Pure CsI is a fast and dense scintillating material with relatively low light yield that increases significantly with cooling, [11] and a fairly small Molière radius is 3.5 cm.
The scintillator consists of a transparent crystal, usually a phosphor, plastic (usually containing anthracene) or organic liquid (see liquid scintillation counting) that fluoresces when struck by ionizing radiation. Cesium iodide (CsI) in crystalline form is used as the scintillator for the detection of protons and alpha particles.
The scintillation process is the same as described for organic crystals (above); what differs is the mechanism of energy absorption: energy is first absorbed by the solvent, then passed onto the scintillation solute (the details of the transfer are not clearly understood).
This is another mechanism of phosphor degradation. The scintillation process in inorganic materials is due to the electronic band structure found in the crystals . An incoming particle can excite an electron from the valence band to either the conduction band or the exciton band (located just below the conduction band and separated from the ...
Figure 1: Sodium iodide gamma spectrum of caesium-137 (137 Cs) An example of a NaI spectrum is the gamma spectrum of the caesium isotope 137 Cs —see Figure 1. 137 Cs emits a single gamma line of 662 keV. The 662 keV line shown is actually produced by 137m Ba, the decay product of 137 Cs, which is in secular equilibrium with 137 Cs.
Indirect detectors contain a layer of scintillator material, typically either gadolinium oxysulfide or cesium iodide, which converts the x-rays into light.Directly behind the scintillator layer is an amorphous silicon detector array manufactured using a process very similar to that used to make LCD televisions and computer monitors.
Researchers can combine information from several layers of this tracker to determine the path of the particles. After passing through the tracker, the particles enter the calorimeter, which consists of a stack of caesium iodide scintillator crystals to measure the total energy of the particles. The LAT's field of view is large, about 20% of the ...
The iodine clock reaction is a classical chemical clock demonstration experiment to display chemical kinetics in action; it was discovered by Hans Heinrich Landolt in 1886. [1] The iodine clock reaction exists in several variations, which each involve iodine species (iodide ion, free iodine, or iodate ion) and redox reagents in the presence of ...