Search results
Results from the WOW.Com Content Network
A histogram is a representation of tabulated frequencies, shown as adjacent rectangles or squares (in some of situations), erected over discrete intervals (bins), with an area proportional to the frequency of the observations in the interval. The height of a rectangle is also equal to the frequency density of the interval, i.e., the frequency ...
In statistics, an ogive, also known as a cumulative frequency polygon, can refer to one of two things: any hand-drawn graphic of a cumulative distribution function [ 1 ] any empirical cumulative distribution function.
Cumulative frequency distribution, adapted cumulative probability distribution, and confidence intervals. Cumulative frequency analysis is the analysis of the frequency of occurrence of values of a phenomenon less than a reference value. The phenomenon may be time- or space-dependent. Cumulative frequency is also called frequency of non-exceedance.
The total area of a histogram used for probability density is always normalized to 1. If the length of the intervals on the x-axis are all 1, then a histogram is identical to a relative frequency plot. Histograms are sometimes confused with bar charts. In a histogram, each bin is for a different range of values, so altogether the histogram ...
Considerations of the shape of a distribution arise in statistical data analysis, where simple quantitative descriptive statistics and plotting techniques such as histograms can lead on to the selection of a particular family of distributions for modelling purposes. The normal distribution, often called the "bell curve" Exponential distribution
In statistics, an empirical distribution function (a.k.a. an empirical cumulative distribution function, eCDF) is the distribution function associated with the empirical measure of a sample. [1]
The radar chart is a chart and/or plot that consists of a sequence of equi-angular spokes, called radii, with each spoke representing one of the variables. The data length of a spoke is proportional to the magnitude of the variable for the data point relative to the maximum magnitude of the variable across all data points.
The aim of distribution fitting is to predict the probability or to forecast the frequency of occurrence of the magnitude of the phenomenon in a certain interval. There are many probability distributions (see list of probability distributions ) of which some can be fitted more closely to the observed frequency of the data than others, depending ...