Search results
Results from the WOW.Com Content Network
Receptors of a particular type are linked to specific cellular biochemical pathways that correspond to the signal. While numerous receptors are found in most cells, each receptor will only bind with ligands of a particular structure. This has been analogously compared to how locks will only accept specifically shaped keys. When a ligand binds ...
The motif contains a tyrosine separated from a leucine or isoleucine by any two other amino acids, giving the signature YxxL/I. [1] Two of these signatures are typically separated by between 6 and 8 amino acids in the cytoplasmic tail of the molecule (YxxL/Ix (6-8) YxxL/I). However, in various sources, this consensus sequence differs, mainly in ...
Ligand binding to a receptor protein alters the conformation by affecting the three-dimensional shape orientation. The conformation of a receptor protein composes the functional state. Ligands include substrates, inhibitors, activators, signaling lipids, and neurotransmitters.
In biochemistry and pharmacology, the Hill equation refers to two closely related equations that reflect the binding of ligands to macromolecules, as a function of the ligand concentration. A ligand is "a substance that forms a complex with a biomolecule to serve a biological purpose", and a macromolecule is a very large molecule, such as a ...
Enzyme-linked receptors (or catalytic receptors) are transmembrane receptors that, upon activation by an extracellular ligand, causes enzymatic activity on the intracellular side. [33] Hence a catalytic receptor is an integral membrane protein possessing both enzymatic, catalytic, and receptor functions. [34]
The JAK-STAT system consists of three main components: (1) a receptor (green), which penetrates the cell membrane; (2) Janus kinase (JAK) (yellow), which is bound to the receptor, and; (3) Signal Transducer and Activator of Transcription (STAT) (blue), which carries the signal into the nucleus and DNA.
The definition is context-dependent, and can refer to the biological target of a pharmacologically active drug compound, the receptor target of a hormone (like insulin), or some other target of an external stimulus. Biological targets are most commonly proteins such as enzymes, ion channels, and receptors.
G protein alpha subunits bind to guanine nucleotides and function in a regulatory cycle, and are active when bound to GTP but inactive and associated with the G beta-gamma complex when bound to GDP. [ 3 ] [ 4 ] G 12 /G 13 are not targets of pertussis toxin or cholera toxin , as are other classes of G protein alpha subunits.