Search results
Results from the WOW.Com Content Network
Competitive inhibition can be overcome by adding more substrate to the reaction, which increases the chances of the enzyme and substrate binding. As a result, competitive inhibition alters only the K m, leaving the V max the same. [3] This can be demonstrated using enzyme kinetics plots such as the Michaelis–Menten or the Lineweaver-Burk plot.
Effects of different types of inhibition on the double-reciprocal plot. When used for determining the type of enzyme inhibition, the Lineweaver–Burk plot can distinguish between competitive, pure non-competitive and uncompetitive inhibitors. The various modes of inhibition can be compared to the uninhibited reaction.
The plot of against has often been called a "Michaelis–Menten plot", even recently, [7] [8] [9] but this is misleading, because Michaelis and Menten did not use such a plot. Instead, they plotted v {\displaystyle v} against log a {\displaystyle \log a} , which has some advantages over the usual ways of plotting Michaelis–Menten data.
When a non-competitive inhibitor is added the Vmax is changed, while the Km remains unchanged. According to the Lineweaver-Burk plot the Vmax is reduced during the addition of a non-competitive inhibitor, which is shown in the plot by a change in both the slope and y-intercept when a non-competitive inhibitor is added. [8]
Uncompetitive inhibition (which Laidler and Bunting preferred to call anti-competitive inhibition, [1] but this term has not been widely adopted) is a type of inhibition in which the apparent values of the Michaelis–Menten parameters and are decreased in the same proportion.
The plot is occasionally attributed to Augustinsson [5] and referred to the Woolf–Augustinsson–Hofstee plot [6] [7] [8] or simply the Augustinsson plot. [9] However, although Haldane, Woolf or Eadie were not explicitly cited when Augustinsson introduced the versus / equation, both the work of Haldane [10] and of Eadie [3] are cited at other places of his work and are listed in his ...
Enzyme inhibition can refer to the inhibition of the expression of the enzyme by another molecule; interference at the enzyme-level, basically with how the enzyme works. This can be competitive inhibition, uncompetitive inhibition, non-competitive inhibition or partially competitive inhibition.
One of the most well known equations to describe single-substrate enzyme kinetics is the Michaelis-Menten equation. This equation relates the initial rate of reaction to the concentration of substrate present, and deviations of model can be used to predict competitive inhibition and non-competitive inhibition. The model takes the form of the ...