Search results
Results from the WOW.Com Content Network
The solid phase is commonly referred to as a “gel” phase. All lipids have a characteristic temperature at which they undergo a transition from the gel to liquid phase. In both phases the lipid molecules are constrained to the two dimensional plane of the membrane, but in liquid phase bilayers the molecules diffuse freely within this plane.
The analysis of 31 P-NMR spectra of lipids could provide a wide range of information about lipid bilayer packing, phase transitions (gel phase, physiological liquid crystal phase, ripple phases, non bilayer phases), lipid head group orientation/dynamics, and elastic properties of pure lipid bilayer and as a result of binding of proteins and ...
Phase transitions commonly refer to when a substance transforms between one of the four states of matter to another. At the phase transition point for a substance, for instance the boiling point, the two phases involved - liquid and vapor, have identical free energies and therefore are equally likely to exist.
The following was determined regarding the liquid-order and liquid-disordered transitions during the addition of cholesterol in the presence of ethanol in each model membrane: 1) 0–15 mol% cholesterol a liquid-disordered phase was present 2) from 15 to 30 mol% there was a co-existence of both phases and 3) above 27 mole% of cholesterol the ...
Lipid molecules in the HII phase pack inversely to the packing observed in the hexagonal I phase described above. This phase has the polar head groups on the inside and the hydrophobic, hydrocarbon tails on the outside in solution. The packing ratio for this phase is larger than one, [1] which is synonymous with an inverse cone packing.
Historically, many cellular non-membrane bound compartments identified microscopically fall under the broad umbrella of biomolecular condensates. In physics, phase separation can be classified into the following types of colloid, of which biomolecular condensates are one example:
The melting temperature of a membrane is defined as the temperature across which the membrane transitions from a crystal-like to a fluid-like organization, or vice versa. This phase transition is not an actual state transition, but the two levels of organizations are very similar to a solid and liquid state.
The hydrophobic chains of sphingomyelin tend to be much more saturated than other phospholipids. The main transition phase temperature of sphingomyelins is also higher compared to the phase transition temperature of similar phospholipids, near 37 °C. This can introduce lateral heterogeneity in the membrane, generating domains in the membrane ...