Search results
Results from the WOW.Com Content Network
Sense of direction is the ability to know one's location and perform wayfinding. [1] [2] It is related to cognitive maps, spatial awareness, and spatial cognition. [3] Sense of direction can be impaired by brain damage, such as in the case of topographical disorientation. Humans create spatial maps whenever they go somewhere.
Negative-sense (3′-to-5′) viral RNA is complementary to the viral mRNA, thus a positive-sense RNA must be produced by an RNA-dependent RNA polymerase from it prior to translation. Like DNA, negative-sense RNA has a nucleotide sequence complementary to the mRNA that it encodes; also like DNA, this RNA cannot be translated into protein directly.
Knowing the difference between the sense and antisense strands is important in certain molecular biology applications. For example, in microarray expression technologies, it is important to know which strand is "viewed" on the array. An array can correspond to either strand; however, a single array will be made entirely of "sense" or "antisense ...
The vestibular sense, or sense of balance (equilibrium), is the sense that contributes to the perception of balance (equilibrium), spatial orientation, direction, or acceleration (equilibrioception). Along with audition, the inner ear is responsible for encoding information about equilibrium.
For example, in a typical gene a start codon (5′-ATG-3′) is a DNA sequence within the sense strand. Transcription begins at an upstream site (relative to the sense strand), and as it proceeds through the region it copies the 3′-TAC-5′ from the template strand to produce 5′-AUG-3′ within a messenger RNA (mRNA).
Some species may only be able to detect north and south, while others may only be able to differentiate between the equator and the poles. Although the ability to sense direction is important in migratory navigation, many animals have the ability to sense small fluctuations in earth's magnetic field to map their position to within a few kilometers.
Karl von Frisch (1953) discovered that honey bee workers can navigate, and indicate the range and direction to food to other workers with a waggle dance.. In 1873, Charles Darwin wrote a letter to Nature magazine, arguing that animals including man have the ability to navigate by dead reckoning, even if a magnetic 'compass' sense and the ability to navigate by the stars is present: [2]
Depending on the type of sensory organs present, a taxis can be classified as a klinotaxis, where an organism continuously samples the environment to determine the direction of a stimulus; a tropotaxis, where bilateral sense organs are used to determine the stimulus direction; and a telotaxis, where a single organ suffices to establish the ...