Search results
Results from the WOW.Com Content Network
Microsoft Math contains features that are designed to assist in solving mathematics, science, and tech-related problems, as well as to educate the user. The application features such tools as a graphing calculator and a unit converter. It also includes a triangle solver and an equation solver that provides step-by-step solutions to each problem.
Fourier–Motzkin elimination, also known as the FME method, is a mathematical algorithm for eliminating variables from a system of linear inequalities. It can output real solutions. The algorithm is named after Joseph Fourier [ 1 ] who proposed the method in 1826 and Theodore Motzkin who re-discovered it in 1936.
A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].
Variable elimination (VE) is a simple and general exact inference algorithm in probabilistic graphical models, such as Bayesian networks and Markov random fields. [1] It can be used for inference of maximum a posteriori (MAP) state or estimation of conditional or marginal distributions over a subset of variables.
The Cholesky decomposition is commonly used in the Monte Carlo method for simulating systems with multiple correlated variables. The covariance matrix is decomposed to give the lower-triangular L . Applying this to a vector of uncorrelated observations in a sample u produces a sample vector Lu with the covariance properties of the system being ...
Here z is the free variable, while x and y are dependent on z. Any point in the solution set can be obtained by first choosing a value for z, and then computing the corresponding values for x and y. Each free variable gives the solution space one degree of freedom, the number of which is equal to the dimension of the solution set.
The bucket elimination algorithm can be adapted for constraint optimization. A given variable can be indeed removed from the problem by replacing all soft constraints containing it with a new soft constraint. The cost of this new constraint is computed assuming a maximal value for every value of the removed variable.
Input: initial guess x (0) to the solution, (diagonal dominant) matrix A, right-hand side vector b, convergence criterion Output: solution when convergence is reached Comments: pseudocode based on the element-based formula above k = 0 while convergence not reached do for i := 1 step until n do σ = 0 for j := 1 step until n do if j ≠ i then ...