Search results
Results from the WOW.Com Content Network
Download QR code; Print/export ... Pollard's rho algorithm for logarithms is an algorithm introduced by John Pollard in 1978 to solve the discrete logarithm problem, ...
Analogously, in any group G, powers b k can be defined for all integers k, and the discrete logarithm log b a is an integer k such that b k = a. In arithmetic modulo an integer m , the more commonly used term is index : One can write k = ind b a (mod m ) (read "the index of a to the base b modulo m ") for b k ≡ a (mod m ) if b is a primitive ...
This was considered a minor step compared to the others for smaller discrete log computations. However, larger discrete logarithm records [1] [2] were made possible only by shifting the work away from the linear algebra and onto the sieve (i.e., increasing the number of equations while reducing the number of variables).
Alternatively one can use Pollard's rho algorithm for logarithms, which has about the same running time as the baby-step giant-step algorithm, but only a small memory requirement. While this algorithm is credited to Daniel Shanks, who published the 1971 paper in which it first appears, a 1994 paper by Nechaev [ 3 ] states that it was known to ...
"On the Efficiency of Pollard's Rho Method for Discrete Logarithms". Conferences in Research and Practice in Information Technology, Vol. 77. The Australasian Theory Symposium (CATS2008). Wollongong. pp. 125– 131. Describes the improvements available from different iteration functions and cycle-finding algorithms.
In computational number theory and computational algebra, Pollard's kangaroo algorithm (also Pollard's lambda algorithm, see Naming below) is an algorithm for solving the discrete logarithm problem. The algorithm was introduced in 1978 by the number theorist John M. Pollard , in the same paper as his better-known Pollard's rho algorithm for ...
The discrete logarithm problem in a finite field consists of solving the equation = for ,, a prime number and an integer. The function f : F p n → F p n , a ↦ a x {\displaystyle f:\mathbb {F} _{p^{n}}\to \mathbb {F} _{p^{n}},a\mapsto a^{x}} for a fixed x ∈ N {\displaystyle x\in \mathbb {N} } is a one-way function used in cryptography .
Steps of the Pohlig–Hellman algorithm. In group theory, the Pohlig–Hellman algorithm, sometimes credited as the Silver–Pohlig–Hellman algorithm, [1] is a special-purpose algorithm for computing discrete logarithms in a finite abelian group whose order is a smooth integer.