Search results
Results from the WOW.Com Content Network
Although this p-value objectified research outcome, using it as a rigid cut off point can have potentially serious consequences: (i) clinically important differences observed in studies might be statistically non-significant (a type II error, or false negative result) and therefore be unfairly ignored; this often is a result of having a small ...
Researchers focusing solely on whether their results are statistically significant might report findings that are not substantive [46] and not replicable. [47] [48] There is also a difference between statistical significance and practical significance. A study that is found to be statistically significant may not necessarily be practically ...
The bald want a cure that is both statistically and practically significant; It will probably work and if it does, it will have a big hairy effect. Scientific publication often requires only statistical significance. This has led to complaints (for the last 50 years) that statistical significance testing is a misuse of statistics. [25]
Hence again, with the same significance threshold used for the one-tailed test (0.05), the same outcome is not statistically significant. Therefore, the two-tailed null hypothesis will be preserved in this case, not supporting the conclusion reached with the single-tailed null hypothesis, that the coin is biased towards heads.
Physiological relevance is a scientific concept that refers to the applicability or significance of a particular experimental finding or biological observation in the context of normal bodily functions. This concept is often used in biomedical research, where scientists strive to design experiments that not only yield statistically significant ...
Data dredging (also known as data snooping or p-hacking) [1] [a] is the misuse of data analysis to find patterns in data that can be presented as statistically significant, thus dramatically increasing and understating the risk of false positives.
While significance is founded on the omnibus test, it doesn't specify exactly where the difference is occurred, meaning, it doesn't bring specification on which parameter is significantly different from the other, but it statistically determines that there is a difference, so at least two of the tested parameters are statistically different. If ...
Referring to statistical significance does not necessarily mean that the overall result is significant in real world terms. For example, in a large study of a drug it may be shown that the drug has a statistically significant but very small beneficial effect, such that the drug is unlikely to help the patient noticeably.