Search results
Results from the WOW.Com Content Network
Table data obtained from CRC Handbook of Chemistry and Physics 44th ed. log 10 of Hexane vapor pressure. ... % by mole hexane liquid vapor 98.32: 0.00: 0.00 96.30: 3. ...
Valid results within the quoted ranges from most equations are included in the table for comparison. A conversion factor is included into the original first coefficients of the equations to provide the pressure in pascals (CR2: 5.006, SMI: -0.875).
This is illustrated in the vapor pressure chart (see right) that shows graphs of the vapor pressures versus temperatures for a variety of liquids. [7] At the normal boiling point of a liquid, the vapor pressure is equal to the standard atmospheric pressure defined as 1 atmosphere, [ 1 ] 760 Torr, 101.325 kPa, or 14.69595 psi.
The Antoine equation is = +. where p is the vapor pressure, T is temperature (in °C or in K according to the value of C) and A, B and C are component-specific constants.. The simplified form with C set to zero:
Hexane (/ ˈ h ɛ k s eɪ n /) or n-hexane is an organic compound, a straight-chain alkane with six carbon atoms and the molecular formula C 6 H 14. [ 7 ] Hexane is a colorless liquid, odorless when pure, and with a boiling point of approximately 69 °C (156 °F).
The higher the vapor pressure of a liquid at a given temperature, the lower the normal boiling point (i.e., the boiling point at atmospheric pressure) of the liquid. The vapor pressure chart to the right has graphs of the vapor pressures versus temperatures for a variety of liquids. [10] As can be seen in the chart, the liquids with the highest ...
A log-lin vapor pressure chart for various liquids. Vapor pressure is a measurement of how readily a condensed phase forms a vapor at a given temperature. A substance enclosed in a sealed vessel initially at vacuum (no air inside) will quickly fill any empty space with vapor.
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds