Search results
Results from the WOW.Com Content Network
Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...
In machine learning, reinforcement learning from human feedback (RLHF) is a technique to align an intelligent agent with human preferences. It involves training a reward model to represent preferences, which can then be used to train other models through reinforcement learning .
In multi-agent reinforcement learning experiments, researchers try to optimize the performance of a learning agent on a given task, in cooperation or competition with one or more agents. These agents learn by trial-and-error, and researchers may choose to have the learning algorithm play the role of two or more of the different agents.
Many applications of reinforcement learning do not involve just a single agent, but rather a collection of agents that learn together and co-adapt. These agents may be competitive, as in many games, or cooperative as in many real-world multi-agent systems. Multi-agent reinforcement learning studies the problems introduced in this setting.
The YouTube channel was founded in 2006 by Sal Khan who at the time was working as a financial analyst. The videos he created reached unprecedented levels of popularity, with hundreds of millions of views in the first few years of operation. [ 2 ]
Proximal policy optimization (PPO) is a reinforcement learning (RL) algorithm for training an intelligent agent. Specifically, it is a policy gradient method, often used for deep RL when the policy network is very large. The predecessor to PPO, Trust Region Policy Optimization (TRPO), was published in 2015.
[10]: 252 The main difference is that reinforcement always increases the likelihood of a behavior (e.g., channel surfing while bored temporarily alleviated boredom; therefore, there will be more channel surfing while bored), whereas punishment decreases it (e.g., hangovers are an unpleasant stimulus, so people learn to avoid the behavior that ...
Inverse reinforcement learning (IRL) is the process of deriving a reward function from observed behavior. While ordinary "reinforcement learning" involves using rewards and punishments to learn behavior, in IRL the direction is reversed, and a robot observes a person's behavior to figure out what goal that behavior seems to be trying to achieve. [3]