enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Branch and price - Wikipedia

    en.wikipedia.org/wiki/Branch_and_price

    Branch and price is a branch and bound method in which at each node of the search tree, columns may be added to the linear programming relaxation (LP relaxation). At the start of the algorithm, sets of columns are excluded from the LP relaxation in order to reduce the computational and memory requirements and then columns are added back to the LP relaxation as needed.

  3. Branch and cut - Wikipedia

    en.wikipedia.org/wiki/Branch_and_cut

    Branch and cut [1] is a method of combinatorial optimization for solving integer linear programs (ILPs), that is, linear programming (LP) problems where some or all the unknowns are restricted to integer values. [2] Branch and cut involves running a branch and bound algorithm and using cutting planes to tighten

  4. Branch and bound - Wikipedia

    en.wikipedia.org/wiki/Branch_and_bound

    The following is the skeleton of a generic branch and bound algorithm for minimizing an arbitrary objective function f. [3] To obtain an actual algorithm from this, one requires a bounding function bound, that computes lower bounds of f on nodes of the search tree, as well as a problem-specific branching rule.

  5. COIN-OR - Wikipedia

    en.wikipedia.org/wiki/COIN-OR

    SYMPHONY is a callable library which implements both sequential and parallel versions of branch, cut and price to solve MILPs. A branch, cut and price algorithm is similar to a branch and bound algorithm but additionally includes cutting-plane methods and pricing algorithms. The user of the library can customize the algorithm in any number of ...

  6. Column generation - Wikipedia

    en.wikipedia.org/wiki/Column_generation

    In many cases, this method allows to solve large linear programs that would otherwise be intractable. The classical example of a problem where it is successfully used is the cutting stock problem. One particular technique in linear programming which uses this kind of approach is the Dantzig–Wolfe decomposition algorithm.

  7. Lambert W function - Wikipedia

    en.wikipedia.org/wiki/Lambert_W_function

    The branch point for the principal branch is at z = − ⁠ 1 / e ⁠, with a branch cut that extends to −∞ along the negative real axis. This branch cut separates the principal branch from the two branches W −1 and W 1. In all branches W k with k ≠ 0, there is a branch point at z = 0 and a branch cut along the entire negative real axis.

  8. Complex plane - Wikipedia

    en.wikipedia.org/wiki/Complex_plane

    The branch cut in this example does not have to lie along the real axis; it does not even have to be a straight line. Any continuous curve connecting the origin z = 0 with the point at infinity would work. In some cases the branch cut doesn't even have to pass through the point at infinity. For example, consider the relationship

  9. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    A model set of the Towers of Hanoi (with 8 disks) An animated solution of the Tower of Hanoi puzzle for T(4,3). The Tower of Hanoi or Towers of Hanoi is a mathematical game or puzzle . It consists of three rods, and a number of disks of different sizes which can slide onto any rod.