Search results
Results from the WOW.Com Content Network
These symbols are collectively called factorial powers. [2] The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation (), where n is a non-negative integer. It may represent either the rising or the falling factorial, with different articles and authors using different conventions.
The word "factorial" (originally French: factorielle) was first used in 1800 by Louis François Antoine Arbogast, [18] in the first work on Faà di Bruno's formula, [19] but referring to a more general concept of products of arithmetic progressions. The "factors" that this name refers to are the terms of the product formula for the factorial. [20]
The distinct polynomial expansions in the previous equations actually define the α-factorial products for multiple distinct cases of the least residues x ≡ n 0 mod α for n 0 ∈ {0, 1, 2, ..., α − 1}.
The Díaz and Pariguan paper does not address the many analogies between the Pochhammer k-symbol and the power function, such as the fact that the binomial theorem can be extended to Pochhammer k-symbols. It is true, however, that many equations involving the power function x n continue to hold when x n is replaced by (x) n,k.
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value
(n factorial) is the number of n-permutations; !n (n subfactorial) is the number of derangements – n-permutations where all of the n elements change their initial places. In combinatorial mathematics, a derangement is a permutation of the elements of a set in which no element appears in its original position.
In mathematics, Stirling's approximation (or Stirling's formula) is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of n {\displaystyle n} .
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for ...