Search results
Results from the WOW.Com Content Network
In this way, it is possible to backpropagate the gradient without involving stochastic variable during the update. The scheme of a variational autoencoder after the reparameterization trick. In Variational Autoencoders (VAEs), the VAE objective function, known as the Evidence Lower Bound (ELBO), is given by:
Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning.They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as ...
Bayesian experimental design provides a general probability-theoretical framework from which other theories on experimental design can be derived. It is based on Bayesian inference to interpret the observations/data acquired during the experiment.
Stochastic approximation methods are a family of iterative methods typically used for root-finding problems or for optimization problems. The recursive update rules of stochastic approximation methods can be used, among other things, for solving linear systems when the collected data is corrupted by noise, or for approximating extreme values of functions which cannot be computed directly, but ...
The variables of the form y t−i indicate that variable's value i time periods earlier and are called the "ith lag" of y t. The variable c is a k -vector of constants serving as the intercept of the model.
Malliavin introduced Malliavin calculus to provide a stochastic proof that Hörmander's condition implies the existence of a density for the solution of a stochastic differential equation; Hörmander's original proof was based on the theory of partial differential equations. His calculus enabled Malliavin to prove regularity bounds for the ...
Variational inference; Approximate Bayesian computation; Estimators; Bayesian estimator; Credible interval; Maximum a posteriori estimation; Evidence approximation; Evidence lower bound; Nested sampling; Model evaluation; Bayes factor (Schwarz criterion) Model averaging; Posterior predictive; Mathematics portal
The main flavours of stochastic calculus are the Itô calculus and its variational relative the Malliavin calculus. For technical reasons the Itô integral is the most useful for general classes of processes, but the related Stratonovich integral is frequently useful in problem formulation (particularly in engineering disciplines).